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1图的基本概念

图的定义

图族图运算

• 完 全 图
• 正 则 图
• 竞 赛 图
• r 部 图
• 超 立 方 体
• 彼 得 森 图

• 无 向 图

• 有 向 图

• 简 单 图

• 生 成 子 图
• 导 出 子 图
• 补 图

图的同构 图的基本概念 顶点度

• 删 除 、 添 加 、 收 缩
• 并 、 交 、 差 、 环 和
• 联 图 、 积 图

• 关 联

• 相 邻

• 邻 域

• 度 数 列

• 握 手 定 理

• 可 图 化

• H a v e l 定 理

• 𝐸𝑟𝑑ö𝑠定 理

Figure 1: 图的基本概念示意图

• 𝛿(𝐺): 最小度, Δ(𝐺): 最大度.

• 握手定理: ∑𝑣∈𝑉 (𝐺) 𝑑(𝑣) = 2 |𝐸(𝐺)|.
• 可图化 ⇔ 𝑑1 + 𝑑2 + … + 𝑑𝑛 ≡ 0(mod 2).
可简单图化 ⇔ Havel定理或者 Erdős-Gallai定理.

• 图同构, 即存在双射 𝑓 : 𝑉 (𝐺) → 𝑉 (𝐻), 使得 (𝑢, 𝑣) ∈ 𝐸(𝐺) ↔ (𝑓(𝑢), 𝑓(𝑣)) ∈ 𝐸(𝐻).
• 4-顶点的标定图个数 26 = 64 个, 构成 11 个同构类.

同构的一点补充

4−顶点标定图的个数：64，构成11个同构类

其中同构于它的补图的是？

同构于自己的补图

Figure 2: 4-顶点图的同构类

其中和自己同构的图称为自同构图, 4-顶点的自同构图有 1 个.

• 完全图, 柏拉图图 (点正则且面正则), 彼得森图 (10 个顶点, 15 条边, 3-正则, 无桥, 无三角形, 

半哈密顿, 非欧拉, 围长 𝑔 = 5, 周长 𝑐 = 9, 直径 𝑑 = 2, 𝜅 = 3, 𝜆 = 3, 𝜒 = 3, 𝜒′ = 4, 𝛼0 = 6, 

𝛼1 = 5, 𝛽0 = 4, 𝛽1 = 5, 𝜈0 = 2, 𝛾0 = 3, 圈秩 𝜉(𝐺) = 6, 割秩 𝜂(𝐺) = 9).

二部图=偶图.

生成子图要求包含原图的所有顶点, 但只包含部分边.
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• 并图, 交图, 差图, 环和.

联图: 𝐺 和 𝐻 的联图 𝐺 + 𝐻 是指

𝑉 (𝐺 + 𝐻) = 𝑉 (𝐺) ∪ 𝑉 (𝐻), 𝐸(𝐺 + 𝐻) = 𝐸(𝐺) ∪ 𝐸(𝐻) ∪ 𝑉1&𝑉2. 𝑁𝑟 + 𝑁𝑠 = 𝐾𝑟,𝑠.

积图: 𝐺 和 𝐻 的积图 𝐺 × 𝐻.
 对于彼得森图，请分别找出它的一个奇圈和一个偶圈。

思考题3.16

v1

v2 v5

v4v3

v6
v7 v10

v8 v9

Figure 3: 彼得森图

2图的连通性

通路

图的连通性有向图的连通性

单 向 连 通

回路

路 径简 单 通 路 初 级 通 路

圈简 单 回 路 初 级 回 路

周 长 围 长

极 大 路 径

距 离 直 径

二 部 图

遍 历 所 有
顶 点 通 路

双 向 连 通

遍 历 所 有
顶 点 回 路

图的连通度

竞 赛 图

遍 历 所 有
顶 点 路 径

连 通 分 支

• 点 连 通 度 𝜿

• 边 连 通 度 𝝀

• 𝑾𝒉𝒊𝒕𝒏𝒆𝒚定理

• 点 割 集

• 边 割 集

• 扇 形 割 集

• 割 点

• 桥

• 块

𝒙 − 𝒚 割 𝑴𝒆𝒏𝒈𝒆𝒓定理

Figure 4: 图的连通性示意图

简单

复杂

初级

通路

回路
× =

简单通路

复杂通路

初级通路

简单回路

复杂回路

初级回路

无重复边

有重复边

无重复顶点

路径

圈

Figure 5: 通路与回路示意图

• 简单 = 无重复边, 复杂 = 有重复边, 初级 = 无重复顶点.

• 周长 (Circumference) 𝑐(𝐺): 图 𝐺 中最长圈的长度.

围长 (Girth) 𝑔(𝐺): 图 𝐺 中最短圈的长度.
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• 𝑣𝑖 → 𝑣𝑗 有通路, 𝑣𝑖 → 𝑣𝑗 有长度小于等于 𝑛 − 1 的通路 (路径).

• 𝑣𝑖 到自己有回路, 𝑣𝑖 到自己有长度小于等于 𝑛 的回路.

𝑣𝑖 到自己有简单回路, 𝑣𝑖 到自己有长度小于等于 𝑛 的圈.

• 扩大路径法.

‣ 证明无向图有 ≥ 𝛿(𝐺) + 1 的圈.

‣ 证明有向图有 ≥ max{𝛿+(𝐺), 𝛿−(𝐺)} + 1 的有向圈.

‣ 证明各圈长度的最大公约数为 1或 2.

• 连通关系是等价关系.

• 连通 ⇒ 𝑚 ≥ 𝑛 − 1.

• 图 𝐺 不连通, 则 𝐺 连通.

• 短程线(测地线), 直径 𝑑(𝐺): 图 𝐺 中任意两点间最长的最短路径长度.

• 二部图 ⇔ 无奇圈

• 强连通(双向)、单向连通、弱连通

Theorem 2.1. 有向图 𝐷 强连通 ⇔ 𝐷 中有回路过每个顶点至少一次.

注: 不一定有简单回路. 反例如下:

定理7.21

说明：不一定有简单回路，反例如下：

有向图𝐷强连通⟺

𝐷中有回路过每个顶点至少一次

Figure 6: 有向图强连通但无简单回路反例

• 单向连通有向图中存在一顶点可达其他所有顶点.

Theorem 2.2. 有向图 𝐷 单向连通 ⇔ 𝐷 中有通路过每个顶点至少一次.

注: 不一定有简单通路. 反例如下:

定理7.22

说明：不一定有简单通路，反例如下：

Figure 7: 有向图单向连通但无简单通路反例

• 竞赛图一定有初级通路(路径)过每个顶点恰好一次.

可以先找到一条路径, 不断尝试扩展它, 直到包含所有顶点为止.

• 具有传递性的竞赛图一定不是强连通的.

• 点割集, 边割集, 割点, 桥, 点连通度 𝜅, 边连通度 𝜆.

• 边割集只能把连通分支加 1. 𝐼𝐺(𝑣) 一定有边割集.

Theorem 2.3. (Whitney定理): 对任意图 𝐺, 有: 𝜅(𝐺) ≤ 𝜆(𝐺) ≤ 𝛿(𝐺).

• 对 3-正则图, 有 𝜅(𝐺) = 𝜆(𝐺).
• 𝛿(𝐺) ≥ 𝑛

2  时, 𝐺 为连通图. 思路: 找到一个极大路径, 证明外面的点都能连到路径上.

• 𝛿(𝐺) ≥ 𝑛+𝑘−1
2  时, 𝐺 为 𝑘-连通图.

Theorem 2.4. (Menger定理): 在图 𝐺 中: 最小的 𝑥 − 𝑦 割包含的顶点数 = 最大的互相独立的 

𝑥 − 𝑦 路径数.

• 3阶以上的图 𝑘-连通, 则任意两个顶点间有 𝑘 条互相独立的路径.

• 3阶以上的图 𝑘-边连通, 则任意两个顶点间有 𝑘 条边不交的路径.

• 块: 极大 无割点 连通子图.
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‣ 不同块的公共点一定是割点, 也即块可以按割点来寻找.

‣ 2-连通 ⊂ 2-边连通

‣ 2-连通 ⊂ 块. 𝐾2 是块, 但不是 2-连通图.

‣ 块 ≠ 2-边连通. 𝐾2 是块, 但不是 2-边连通图. 8字形图是 2-边连通, 但不是块.

3欧拉图与哈密顿图

欧 拉 图 应 用

欧 拉 回 路

d e  B r u i j n  图逐 步 插 入 回 路 法

欧 拉 图 类 型 欧 拉 通 路

半 欧 拉 图 判 定

欧 拉 图

𝑭 𝒍 𝒆 𝒖 𝒓 𝒚 避 桥 法

欧 拉 回 路 算 法

欧 拉 图 判 定
有 向 欧 拉 图

Figure 8: 欧拉图示意图

• 欧拉图的充要条件: 连通且所有顶点度为偶数.

• 半欧拉图的充要条件: 连通且恰有两个奇度顶点.

• 有向欧拉图的充要条件: 强连通且每个顶点的入度等于出度.

• 有向半欧拉图的充要条件: 单向连通且恰有一个顶点的出度比入度大 1, 一个顶点的入度比出

度大 1, 其余顶点的入度等于出度.

• Fleury算法构造欧拉回路/通路. 插入回路法构造欧拉回路/通路.

• de Bruijn序列. E.g., 4位序列, 顶点为 3位, 有向边为 4位, 每条边从前三位指向后 3位. 注

意: 有的不要求的边不要画. 然后求出一个欧拉回路, 每个边取最后一位.

哈 密 顿 回 路

哈 密 顿 图 类 型

哈 密 顿 通 路

完 全 图 的 边 不 重 哈 密 顿 回 路

必 要 条 件

𝒑(𝑮 − 𝑽𝟏) ≤ |𝑽𝟏|

哈 密 顿 图

有 向 哈 密 顿 图

竞 赛 图

有 向 半 哈 密 顿 图

强 连 通 竞 赛 图

有 向 哈 密 顿 图

充 分 条 件

𝒅 𝒖 + 𝒅 𝒗 ≥ 𝒏

半 哈 密 顿 图

必 要 条 件

𝒑(𝑮 − 𝑽𝟏) ≤ 𝑽𝟏 + 𝟏

充 分 条 件

𝒅 𝒖 + 𝒅 𝒗 ≥ 𝒏 − 𝟏
哈 密 顿 图

Figure 9: 哈密顿图示意图

• 哈密顿图 ⇒ ∀𝑉1 ⊂ 𝑉 , 𝑝(𝐺 − 𝑉1) ≤ |𝑉1|.
• 𝐺 中任意不相邻顶点 𝑑(𝑢) + 𝑑(𝑣) ≥ 𝑛 ⇒ 哈密顿图.

‣ 推论: 𝛿(𝐺) ≥ 𝑛
2  ⇒ 哈密顿图.

‣ 注意: 𝛿(𝐺) ≥ ⌊𝑛
2 ⌋ 不一定是哈密顿图.
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Figure 10: 𝛿(𝐺) ≥ ⌊𝑛
2 ⌋ 但不是哈密顿图反例

• 半哈密顿图 ⇒ ∀𝑉1 ⊂ 𝑉 , 𝑝(𝐺 − 𝑉1) ≤ |𝑉1| + 1.

• 𝐺 中任意不相邻顶点 𝑑(𝑢) + 𝑑(𝑣) ≥ 𝑛 − 1 ⇒ 半哈密顿图.

• 竞赛图 ⇒ 半哈密顿图.

• 强连通的竞赛图 ⇒ 哈密顿图.

注意: 𝐾2𝑘+1 中同时有 𝑘 条边不重的哈密顿回路.

𝐾2𝑘 中同时有 𝑘 − 1 条边不重的哈密顿回路; 除此之外，, 下的是 𝑘 条彼此不相邻的边.

4树

树 的 性 质同 构 树 枚 举

生 成 树 生 成 树 计 数生 成 树 定 义

连 通 无 回

任意𝟐顶点 之间 有 唯一 路 径

无圈 ∧ 𝒎 = 𝒏 − 𝟏

连 通 ∧ 𝒎 = 𝒏 − 𝟏极 小 连 通极 大 无 回

树

树 枝 弦

基 本 割 集 基 本 回 路

𝑪𝒂𝒚𝒍𝒆𝒚定 理

𝝉 𝑮 = 𝝉 𝑮 − 𝒆 + 𝝉 (𝑮\e)

𝑪𝒂𝒚𝒍𝒆𝒚公 式

𝝉 𝑲𝒏 = 𝒏𝒏−𝟐

Figure 11: 树的基本概念示意图定理9.1：树的等价定义

𝟏

𝟐

𝟑

𝟒

𝟓

𝟔

𝑮是树 连通、无回

𝑮 中任何 𝟐 顶点之间有唯一路径

𝑮 无圈 ∧𝒎 = 𝒏 − 𝟏

𝑮 连通 ∧𝒎 = 𝒏 − 𝟏

𝑮 极小连通：

连通 ∧ 所有边是桥

𝑮 极大无回：无圈 ∧ 

增加任何新边产生唯一圈

Figure 12: 树的等价定义

• 无向树的计数: 𝑡𝑛 表示 𝑛 阶非同构无向树的个数.

‣ 𝑡4 = 2, 𝑡5 = 3, 𝑡6 = 6, 𝑡7 = 11, 𝑡8 = 23, 𝑡9 = 47, 𝑡10 = 106.

• 生成树: 𝑛 − 1 条树枝, 𝑚 − 𝑛 + 1 条弦.

‣ 基本回路: 每条弦与生成树唯一确定一个基本回路. 圈秩: 𝜉(𝐺) = 𝑚 − 𝑛 + 1.

‣ 基本割集: 每条树枝与生成树唯一确定一个基本割集. 割秩: 𝜂(𝐺) = 𝑛 − 1.
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• Caylay 定理: 𝜏(𝐺) = 𝜏(𝐺 − 𝑒) + 𝜏(𝐺 \ 𝑒).
• 树的 Prüfer 编码: 第 𝑖 步删除当前最小叶子节点, 记录其邻接点, 共删除 𝑛 − 2 步.

‣ 从 Prüfer 编码恢复树: 统计每个节点在编码中出现的次数, 出现 𝑘 次则度为 𝑘 + 1. 初始化

所有节点的度数, 然后依次连接当前最小的度为 1的节点与编码中的节点, 最后剩下两个度

为 1的节点相连.

‣ 𝐾𝑛 的生成树数目 𝑛𝑛−2.

计算  𝜏(𝐾𝑛 − 𝑒): 𝐾𝑛 的每个生成树里含有  𝑛 − 1 条边 , 每条边在相同数量的生成

树中出现 . 因为  𝐾𝑛 有  𝑛(𝑛−1)
2  条边 , 所以每条边在  2𝑛𝑛−3 棵生成树中出现 . 因此  

𝜏(𝐾𝑛 − 𝑒) = 𝑛𝑛−2 − 2𝑛𝑛−3 = (𝑛 − 2)𝑛𝑛−3. 𝜏(𝐾𝑛 \ 𝑒) = 2𝑛𝑛−3.

5图的矩阵表示

有 向 图 关 联
矩 阵 𝑴 𝑫

图 的 矩 阵
表 示 类 型

无 向 图 关 联
矩 阵 𝑴(𝑮)

基 本 关 联
矩 阵 𝑴 𝒇 (𝑮)

求 所 有
生 成 树

有 向 图 邻 接
矩 阵 𝑨 𝑫

无 向 图 相 邻
矩 阵 𝑨 𝑮

可 达 矩 阵 𝑷 𝑫 连 通 矩 阵 𝑷 𝑮

用 𝑨 的 幂 求 不 同 长 度
通 路 或 回 路 总 数

行列和
握手定理

平行边

对角线

对称性

环

矩阵性质

Figure 13: 图的矩阵表示示意图

• 关联矩阵, 基本关联矩阵.

‣ 用关联矩阵求所有生成树: 对基本关联矩阵的任意 𝑛 − 1 行和 𝑛 − 1 列求行列式, 绝对值非

零的子式对应一棵生成树.

• 邻接矩阵. 用来求长度为 𝑘 的通路数: 𝐴𝑘[𝑖, 𝑗].
• 相邻矩阵: 只记录是否相邻.

• 连通矩阵, 可达矩阵.

6平面图
• 极大平面图 ⇔ deg(𝑅) = 3
• 极小非平面图: 𝐾5, 𝐾3,3
• 面的握手定理: ∑𝑟

𝑖=1 deg(𝑅𝑖) = 2𝑚
‣ 树 𝑇 , |𝑇 | = 𝑛, deg(𝑇0) = 2(𝑛 − 1)
‣ 一棵 𝑛 阶树, 随意添加一条弦, 构成一个平面图, 该平面图的外部面最大可能达到的次数是 

2𝑛 − 3.

• 欧拉公式: 𝑛 − 𝑚 + 𝑟 = 2, 𝑛 − 𝑚 + 𝑟 = 1 + 𝑝
• 各面次数至少为 ℓ ≥ 3, 则: 𝑚 ≤ (𝑛 − 2) ℓ

ℓ−2 , 𝑚 ≤ (𝑛 − 𝑝 − 1) ℓ
ℓ−2 , 𝑚 ≤ 3𝑛 − 6.

• Kuratowski定理: 图 𝐺 平面图 ⇔ 𝐺 中不含有 𝐾5 或 𝐾3,3 的同胚子图 (或是没有可以边收缩

到𝐾5 或 𝐾3,3 的子图).

注意: 𝐺1 ≅ 𝐺2, 不一定有: 𝐺∗
1 ≅ 𝐺∗

2 . 下面是一个反例:
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对偶图的性质

𝑮𝟏 ≅ 𝑮𝟐, 不一定 𝑮𝟏
∗ ≅ 𝑮𝟐

∗

Figure 14: 对偶图不一定同构反例

• 𝑽∗ ↔ 𝑹

• 𝑬∗ ↔ 𝑬

• 环↔桥

对偶图性质

对 偶 图 构 造

𝑮连 通 ⟺𝑮 ≅ 𝑮∗∗

对 偶 图 对偶图与同构

自 对 偶 图
𝑮 ≅ 𝑮∗

• 对 偶 图 连 通

• 𝒏∗ = 𝒓,𝒎∗ = 𝒎

• 𝒓∗ = 𝒏 − 𝒑 + 𝟏

• 𝒅𝑮∗(𝒗𝒊
∗) = 𝒅𝒆𝒈𝑮(𝑹𝒊)

𝑮𝟏 ≅ 𝑮𝟐 ⇎ 𝑮𝟏
∗ ≇ 𝑮𝟐

∗

Figure 15: 对偶图示意图

• 𝐺 连通 ⇔ 𝐺 ≅ 𝐺∗∗.

• 𝑛 ≥ 4 时, 轮图是自对偶图.

外平面图判定外 平 面 图

极大外平面图

极 大 外 平 面 图 性 质

极 大 外 平 面 图 判 定

不 与 𝑲𝟒, 𝑲𝟐,𝟑同 胚

• 𝒏 − 𝟐个内部面

• 𝒎 = 𝟐𝒏 − 𝟑

• 至少有 𝟑个顶点度数 ≤ 𝟑

• 至少有 𝟐个顶点度数 = 𝟐

• 𝜿 = 𝟐

𝒏-圈 + 𝟑-圈

Figure 16: 外平面图示意图

• 外平面图: 平面图的所有顶点可都在一个面的边界上.
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• 所有顶点在外部面边界上的极大外平面图充要条件: 𝐺 外部面边界是 𝑛-圈, 其余面都是三角

形.

平 面 哈 密 顿 图

充 分 条 件

𝑻𝒂𝒊𝒕猜 想 及 其 反 例

平 面 哈 密 顿 图
平 面 哈 密 顿 图

必 要 条 件

෍
𝒊=𝟑

𝒏

𝒊 − 𝟐 𝒓𝒊
′ − 𝒓𝒊

′′ = 𝟎4 - 连 通 平 面 图

3 连 通 3 正 则 平 面 图

Figure 17: 平面哈密顿图示意图

• Tait猜想: 3连通 3正则平面图都是哈密顿图.

• 反例: Tutte图, Lederberg图.

• 平面哈密顿图充分条件: 4连通平面图是哈密顿图.

• 平面哈密顿图必要条件: 𝑟′
𝑖 表示内部次数为 𝑖 的面数, 𝑟″

𝑖  表示外部次数为 𝑖 的面数, 

则 ∑𝑖≥3(𝑖 − 2)(𝑟′
𝑖 − 𝑟″

𝑖 ) = 0.

7图的着色

色 多 项 式• 完 全 图

• 零 图

• 树

• 圈

𝝌 𝑮 ≤ ∆ 𝑮 + 𝟏

着 色

𝑩𝒓𝒐𝒐𝒌𝒔定理

递 推 公 式

性 质

点 着 色

点 色 数 𝝌
• 完 全 图

• 零 图

• 二 部 图

• 轮 图

• 圈

五 色 定 理

面 着 色 ⟷ 对 偶 图 点 着 色

六 色 定 理

平 面 图 着 色

𝑽 𝒊 𝒛 𝒊 𝒏 𝒈 定 理

𝚫 𝑮 ≤ 𝝌′ 𝑮 ≤ 𝚫 𝑮 + 𝟏

边 着 色

二 部 图

𝝌′ 𝑮 = 𝚫 𝑮

𝝌′ 𝑲𝒏 = ቐ
𝒏, 𝒏奇数

𝒏 − 𝟏, 𝒏偶数

Figure 18: 图的着色示意图

• 𝜒(𝐺) ≤ Δ(𝐺) + 1.

• Brooks定理: 除完全图和奇圈外, 𝜒(𝐺) ≤ Δ(𝐺).
• 𝜒(𝐾𝑛) = 𝑛, 𝜒(𝑁𝑛) = 1.

• 二部图: 𝜒(𝐺) = 2, 若含有边, 否则 𝜒(𝐺) = 1.

𝜒(𝑊𝑛) = {3, 若 𝑛 为奇数
4, 若 𝑛 为偶数

奇圈: 𝜒(𝐶𝑛) = 3. 偶圈: 𝜒(𝐶𝑛) = 2.

• 着色可以得到独立集.

• 𝑓(𝐾𝑛, 𝑘) = 𝑘(𝑘 − 1)⋯(𝑘 − 𝑛 + 1).
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• 色多项式的递推公式:

‣ 删边: 𝑒 是 𝐺 中的边, 𝑓(𝐺, 𝑘) = 𝑓(𝐺 − 𝑒, 𝑘) − 𝑓(𝐺 \ 𝑒, 𝑘).
‣ 添边: (𝑢, 𝑣) 不是 𝐺 中的边, 𝑓(𝐺, 𝑘) = 𝑓(𝐺 ∪ (𝑢, 𝑣), 𝑘) + 𝑓(𝐺 \ (𝑢, 𝑣), 𝑘).

• 𝑓(𝑇 , 𝑘) = 𝑘(𝑘 − 1)𝑛−1.

• 𝑓(𝐶, 𝑘) = (𝑘 − 1)𝑛 + (−1)𝑛(𝑘 − 1).
• 色多项式的性质: 常数项为 0, 首项系数为 1, 𝑘𝑛−1 的系数为 −𝑚, 系数符号交替.

• 同构的图具有相同的色多项式, 但逆不真.

𝐺 是 2-面可着色的 ⟹ 𝐺 是欧拉图

六色定理: 任何平面图都可 6-着色.

简单平面图 ⇒ 𝛿(𝐺) ≤ 5.

五色定理(Heawood, 1890): 任何平面图都可 5-着色.

边着色: 同色边构成“边独立集”或“匹配”.

8支配集 覆盖集 独立集 匹配
点覆盖集: 𝛼0, 边覆盖集: 𝛼1.

点独立集: 𝛽0, 边独立集(匹配): 𝛽1.

支配集: 𝛾0, 团: 𝜈0.

𝜶𝟎

𝜷𝟎

𝜸𝟎

𝝊𝟎
点覆盖是支配集

𝑽∗极小点覆盖 ⟺ 𝑽− 𝑽∗极大独立集

𝑽∗极大独立集⟹ 𝑽∗极小支配集

𝑽∗𝑮的团⟺ 𝑽∗𝑮的独立集

团

独立
点集

支配

点覆盖

Figure 19: 支配集, 覆盖集, 独立集的关系示意图

• 𝑉 ∗ 是极大独立集 ⇒ 𝑉 ∗ 是极小支配集.

‣ 推论: 𝛾0 ≤ 𝛽0.

‣ 极小支配集不一定是(极大)独立集.

• 𝑉 ∗ 是 𝐺 的团 ⇔ 𝑉 ∗ 是 𝐺 的独立集.

‣ 推论: 𝜈0(𝐺) = 𝛽0(𝐺).

• 无孤立点图中, 𝑉 ∗ 是点覆盖集 ⇒ 𝑉 ∗ 是支配集.

‣ 推论: 𝛾0 ≤ 𝛼0.

‣ 点覆盖加所有孤立点是支配集.

‣ 极小点覆盖不一定是极小支配集.

‣ 支配集不一定是点覆盖.

• 无孤立点, 𝑉 ∗ 是点覆盖 ⇔ 𝑉 − 𝑉 ∗ 是独立集.

‣ 推论: 𝛼0 + 𝛽0 = 𝑛.

最大匹配与最小边覆盖的关系:
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(i) 在最大匹配 𝑀  上加入非饱和点集 𝑁  得到边覆盖 𝑊 = 𝑀 ∪ 𝑁 .

(ii) 在最小边覆盖 𝑊1 上删除相邻边 𝑁1 得到匹配 𝑀1 = 𝑊1 − 𝑁1.

(iii) 𝛼1 + 𝛽1 = 𝑛.

𝛽1 ≤ 𝛼0, 𝛽0 ≤ 𝛼1, 𝛽1 ≤ 𝛼1.𝜶𝟎, 𝜷𝟎 , 𝜸𝟎, 𝝊𝟎, 𝜶𝟏, 𝜷𝟏之间关系

无向图G无孤立点

𝜸𝟎 ≤ 𝜶𝟎, 𝜷𝟎 (补充定理,定理13.2补充推论)

𝒏 = 𝜶𝟎 + 𝜷𝟎 (定理13.3推论)

𝝊𝟎 𝑮 = 𝜷𝟎 ≤ 𝜶𝟏 (定理13.4推论,13.6推论)

𝒏 = 𝜶𝟏 + 𝜷𝟏 (定理13.5)

𝜷𝟏 ≤ 𝜶𝟏, 𝜶𝟎 (定理13.5, 定理13.6推论)

𝜶𝟏, 𝜷𝟏是容易计算的(tractable, easy)

Figure 20: 支配集, 覆盖集, 独立集, 匹配的关系示意图

Theorem 8.1. 设 𝑀1, 𝑀2 是 𝐺 中 2个不同匹配, 则 𝐺[𝑀1 ⊕ 𝑀2] 的每个连通分支是 𝑀1 和 

𝑀2 中的边组成的交错圈或交错路径.

Theorem 8.2. 设 𝑀 是 𝐺 中匹配, Γ 是 𝑀 的可增广路径, 则 𝑀 ′ = 𝑀 ⊕ 𝐸(Γ) 也是 𝐺 中匹

配, 且 |𝑀 ′| = |𝑀| + 1.

𝒌 − 正 则 二 部 图

霍 尔 条 件

完 备 匹 配

霍 尔 定 理

（ 充 要 条 件 ）

𝒕 − 条 件

（ 充 分 条 件 ）

存 在 𝒌 个 边 不 重 的 完 美 匹 配

二 部 图

无 孤 立 点 二 部 图

𝜶𝟎 = 𝜷𝟏

Figure 21: 二部图的匹配示意图

最大匹配: 贝尔热(Berge)定理.

• 𝑀  是 𝐺 中最大匹配 ⇔ 𝐺 中无 𝑀  可增广路径.

完美匹配: 托特(Tutte)定理.

• 𝐺 有完美匹配 ⇔ 对任意 𝑉 ′ ⊂ 𝑉 (𝐺), 有 𝑝奇(𝐺 − 𝑉 ′) ≤ |𝑉 ′|.
• 推论: 无桥 3-正则图有完美匹配.

(二部图的)完备匹配:

• 充要条件: 霍尔定理 = ∀𝑆 ⊆ 𝑉1, |𝑆| ≤ |𝑁(𝑆)|.
• 充分条件: 𝑡-条件 = 𝑉1 中每个顶点至少关联 𝑡 条边, 且 𝑉2 中每个顶点至多关联 𝑡 条边.

完备匹配: |𝑉1| ≤ |𝑉2| 且 |𝑀| = |𝑉1|.
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𝑘-正则二部图中存在 𝑘 个边不重的完美匹配.

无孤立点二部图中 𝛼0 (点覆盖) = 𝛽1 (匹配数).

9图论练习题
Theorem 9.1. (Chvátal-Erdős 定理): 设 𝐺 是 3 阶以上无向连通简单图, 且 𝐺 中最大独立集

的大小不超过 𝐺 的点连通度, 证明: 𝐺 一定是哈密顿图.

Proof. 我们设 𝐺 的顶点数为 𝑛, 点连通度为 𝑘, 最大独立集的大小为 𝛼(𝐺). 用反证法, 假设 𝐺 不

是哈密顿图. 我们取 𝐺 中的一个最长回路 𝐶, 由于 𝐺 不是哈密顿图, 我们一定有 |𝑉 (𝐶)| < 𝑛. 同

时我们设 𝐶 = 𝑥1𝑥2…𝑥|𝑉 (𝐶)|. 同时一定有 |𝑉 (𝐶)| ≥ 𝑘, 可以考虑使用极大路径法证明图中一定有

长度大于等于 𝛿(𝐺) + 1 的圈.

根据Menger定理, 我们选取 𝑢 ∉ 𝑉 (𝐶) 和 {𝑥𝑖𝑠
| 𝑥𝑖𝑠

∈ 𝑉 (𝐶), 1 ≤ 𝑠 ≤ 𝑘} (此处的下标按顺序排

列), 则 𝐺 中有 𝑘 条不交的独立路径 𝑢 − 𝑥𝑖𝑠
(1 ≤ 𝑠 ≤ 𝑘).

(i) 𝑢 没有到 𝑥𝑖𝑠+1 的路径. 假设存在这样的路径, 那么我们可以舍弃 𝐶 上的 (𝑥𝑖𝑠
, 𝑥𝑖𝑠+1), 选择 

𝑥𝑖𝑠
− 𝑢 − 𝑥𝑖𝑠+1 加入 𝐶 中得到 𝐶′, 新增的这段路径的长度至少为 2, 因此 |𝑉 (𝐶′)| > |𝑉 (𝐶)|, 

矛盾.

(ii) 𝑥𝑖𝑠+1 没有到 𝑥𝑖𝑡+1 的路径, 𝑠 ≠ 𝑡. 假设存在这样的路径, 那么我们可以舍弃 𝐶 上的 

(𝑥𝑖𝑠
, 𝑥𝑖𝑡+1) (这一段长度为 𝑡 − 𝑠 + 1), 选择加入 𝑥𝑖𝑠

− 𝑢 − 𝑥𝑖𝑡
− 𝑥𝑖𝑠+1 − 𝑥𝑖𝑡+1, 这一段长度

至少为 𝑡 − 𝑠 + 2, 因此 |𝑉 (𝐶′)| > |𝑉 (𝐶)|, 矛盾.

考虑上面两个结论, 我们发现 {𝑥𝑖𝑠+1}1≤𝑠≤𝑘
∪ {𝑢} 任意两点之间没有边相连, 这构成了一个大小

为 𝑘 + 1 的独立集, 矛盾.

Figure 22: Chvátal-Erdős 定理证明示意图

□

Question 9.2. 下面关于 𝑛 阶简单连通无向图的 𝜅, 𝜆, 𝛿 比较关系的说法中, 可能会出现的情

形是?

(i) 𝜅 = 𝜆 = 𝛿 = 𝑛 − 1;

(ii) 1 ≤ 2𝛿 − 𝑛 + 2 ≤ 𝜅 ≤ 𝜆 = 𝛿 ≤ 𝑛 − 2;

(iii) 0 ≤ 𝜅 ≤ 𝜆 ≤ 𝛿 < ⌊𝑛
2 ⌋;

可图化 ⇔ 𝑑1 + 𝑑2 + … + 𝑑𝑛 ≡ 0(mod 2);
可简单图化 ⇔ Havel定理或者 Erdős-Gallai定理.
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Theorem 9.3. (Havel定理): 给定 𝑛 个非负整数 𝑑1 ≥ 𝑑2 ≥ … ≥ 𝑑𝑛. 这些数是某个简单图的度

数序列的充分必要条件是: 𝑑′ = (𝑑2 − 1, 𝑑3 − 1, …, 𝑑𝑑1+1 − 1, 𝑑𝑑1+2, 𝑑𝑛) 可简单图化.

Theorem 9.4. (Erdős-Gallai定理): 给定 𝑛 个非负整数 𝑑1 ≥ 𝑑2 ≥ … ≥ 𝑑𝑛. 这些数是某个

简单图的度数序列的充分必要条件是 : ∑𝑛
𝑖=1 𝑑𝑖 为偶数 , 且对任意的 𝑘 ∈ {1, 2, …, 𝑛}, 有 

∑𝑘
𝑖=1 𝑑𝑖 ≤ 𝑘(𝑘 − 1) + ∑𝑛

𝑖=𝑘+1 min(𝑑𝑖, 𝑘).

Theorem 9.5. 设图 𝐺 的直径大于 3, 则 G 的补图的直径 ≤ 3.

Proof. 图 𝐺 的直径大于 3 意味着存在 𝑢, 𝑣 ∈ 𝑉 (𝐺), 使得 𝑑𝐺(𝑢, 𝑣) ≥ 4. 因为 𝐺 是简单图, 所以 

𝑢 和 𝑣 之间没有边相连, 因此 (𝑢, 𝑣) ∈ 𝐸(𝐺).

我们设 𝑃 = 𝑁(𝑢) ∪ 𝑁(𝑣), 𝑄 = 𝑉 − 𝑃 .

• 𝑃  中两点. 对任意的 𝑥 ∈ 𝑁(𝑢) 和 𝑦 ∈ 𝑁(𝑣) 在 𝐺 中不相邻, 那么在 𝐺 中必然相邻, 因此 

𝑑𝐺(𝑥, 𝑦) = 1. 那么如果是 𝑥1, 𝑥2 ∈ 𝑁(𝑢), 他们之间的距离最多为 2.

• 𝑄 中两点. 𝑄 中任意一点现在均与 𝑢 和 𝑣 相邻, 因此可以走 𝑠 → 𝑢 → 𝑣 → 𝑡 的路径, ∀𝑠, 𝑡 ∈ 𝑄.

• 𝑃  和 𝑄 中各取一点. 𝑥 ∈ 𝑃 , 𝑦 ∈ 𝑄. 如果 𝑥 ∈ 𝑁(𝑢), 则 𝑥 → 𝑉 → 𝑦 是一条长度为 2的路径; 

如果 𝑥 ∈ 𝑁(𝑣), 则 𝑥 → 𝑢 → 𝑦 是一条长度为 2的路径.

□

证明: 若有向图 𝐺 的底图 (指忽略边的方向后得到的无向图) 的色数为 𝑘, 则 𝐺 中必存在长度为 

𝑘 − 1 的有向路径.

• ℓ(𝑣) 表示从 𝑣 出发的最长路径长度.

• 假设不存在, 证明 ℓ(𝑣) 可以构成一种 (𝑘 − 1) 染色方案.

证明: 一棵树的完美匹配若存在则是唯一的.

• 假设有两个不同的完美匹配 𝑀1 和 𝑀2，则 𝑀1 ⊕ 𝑀2 不为空，𝐺(𝑀1 ⊕ 𝑀2) 每个点的度数都
为 2, 则有圈，与树矛盾.

证明: 𝜒(𝐺) + 𝜒(𝐺) ≥ 2
√

𝑛.

• 设 𝜒(𝐺) = 𝑘, 则 𝑉 (𝐺) 可分为 𝑘 个独立集 𝑉1, 𝑉2, …, 𝑉𝑘.

• 则 𝐺 中每个 𝑉𝑖 都是团, 则 𝜒(𝐺) ≥ max{|𝑉𝑖|} ≥ 𝑛
𝑘 .

• 因此 𝜒(𝐺) + 𝜒(𝐺) ≥ 𝑘 + 𝑛
𝑘 ≥ 2

√
𝑛.

某镇有居民 1000 人, 每天他们中的每一个人把昨天听到的消息告诉所有认识的人. 已知任何消

息, 只要镇上有人知道, 都会经这种方式逐渐地为全镇人知道. 求证: 可选出 90 个居民代表, 使

得只要同时向他们传达某一消息, 经过 10 天后, 就会为全镇居民知道.

• 这个图是连通的. 可以去掉圈上的边得到一个生成树.

• 找到其中的一个最长的路径. 我们选取 𝑣11 作为一个居民代表, 左边的树离他的距离必然小于

等于 10, 否则就有一个更长的路.

• 对右边的树也同样的处理.

• 那么 89 个这样的代表可负责把消息传递给 89 × 11 = 979 个人.

• 剩下的 21 个人, 任选 1 个作为代表, 则可负责把消息传递给剩下的 21 个人.

图 𝐺 中的任意一个极大匹配的边数都大于等于其最大匹配的边数的一半.

• 设 𝑀  是 𝐺 的最大匹配, |𝑀| = 𝑚. 则图中有 𝑛 − 2|𝑀| 个关于 𝑀  的非饱和点.

• 这些非饱和点必然是点独立的.

• 𝑛 − 2|𝑀| ≤ 𝛽0 ≤ 𝛼1 = 𝑛 − 𝛽1 ⇒ |𝑀| ≥ 1
2𝛽1.
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